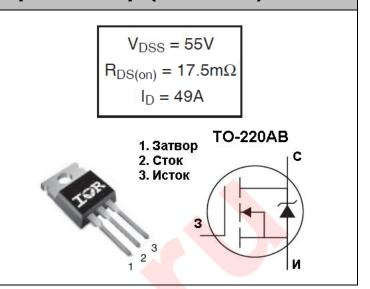
IRFZ44N


Полевой n-канальный транзистор (MOSFET).

ОСОБЕННОСТИ:

- Передовые технологии.
- Ультра низкое сопротивление.
- 175 °С рабочая температура.
- Быстродействующий.

ПРИМЕНЕНИЕ

• Транзисторы используются в широком спектре радиоэлектронных средств.

Значения предельно допустимых электрических режимов эксплуатации.

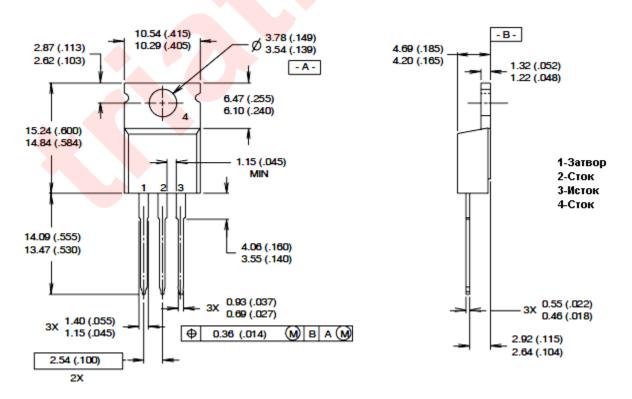
Обозначение	Параметр	Значение	Единицы измерения
lc max	Непрерывный ток стока T _C = 25°C	49	Α
lc max	Непрерывный ток стока T _C = 100°C	35	Α
Iси max	Импульсный ток стока	160	Α
Pc max	Рассеиваемая мощность T _C = 25°C	94	Вт
	Линейный коэффициент сниже <mark>ния</mark>	0.63	Вт/°С
Uзи	Напряжение насыщения затвор-исток	± 20	В
Іл.	Лавинный ток	25	Α
dv/dt	Пиковое диодн <mark>ое</mark> восстановление	5	В/нсек.
Tj	Температ <mark>ура пе</mark> рехода	175	°C
Tamb	Диапазон рабо <mark>чих те</mark> мператур	-55 до 175	°C
Tstg	Диапазон <mark>темпе</mark> ратур хранения	-55 до 175	°C
	Температур <mark>а пайки, в</mark> течение 10 секунд	300 (1.6мм от корпуса)	°C

Тепловые характеристики при Токр. среды = 25 °C.

Обозначение	Параметр	Значение	Единицы измерения
$R_{\theta JC}$	Теплов <mark>ое со</mark> противл <mark>ени</mark> е переход-корпус	1.4	°С/Ват
$R_{\theta CS}$	Тепловое сопротивление кристалл-радиатор (с термопастой)	0.5	°С/Ват
$R_{\theta JA}$	Тепловое сопротивление переход-окружающая среда	62	°С/Ват

Электрические характеристики при Токр. среды = 25 °C.

Обозначение	Параметр	Условия испытания	Мин.	Тип.	Макс	Единицы измерения
Uси (проб.)	Напряжение пробоя сток-исток	Ic=250мкA, Uзи=0	55			В
Δ Uси(проб.) /ΔTj	Температурный коэффициент напряжения пробоя	Ic=1мА, Отношение к 25°С		0.058		B/°C
I RCM(BKIL)	Сопротивление сток-источника открытого транзистора	Ic=25A, Uзи=10B			17.5	мОм
Uзи (пор.)	Пороговое напряжение затвора	Ic=250мкА, Uси= Uзи	2		4	В
G пр.	Проводимость в прямом направлении	Ic=25A, Ucи=25B	19			S
Іс ут.	Ток утечки сток-исток	Uси=55B, Uзи=0 Uси=55B, Uзи=0, T _J =150°C			25 250	мкА
Із ут.	Ток утечки вперед затвор-исток Ток утечки затвор-исток обратный	Uзи=20B Uзи=-20B			100 -100	нА


Обозначение	Параметр	Условия испытания	Мин.	Тип.	Макс	Единицы измерения
Q3	Полный заряд затвора				63	нКул
Qзи	Заряд затвор-исток	Ic=28A, Ucи=44B, Uзи=10B			14	
Qзс	Заряд затвор-сток				23	
tзд (вкл.)	Время задержки выключения			12		нсек
tнр	Время нарастания	Uc=28B, Ic=25A,		60		
tзд (выкл.)	Время задержки выключения	Rз=12ом, Uзи=10B		44		
tсп	Время спада	1		47		
Lc	Внутренняя индуктивность стока			4.5		нГн
Lи	Внутренняя индуктивность истока			7.5		ni n
Свх.	Емкость входа			1470		
Свых.	Емкость выхода			360		пФ
Coc	Обратная емкость			88		
E _{AS}	Энергия лавины моноимпульса	I _{AS} =25A, L=0.47мГн		530	150	мЈ

Исток-сток характеристики диода.

Обозначение	Параметр	Условия испытания	Мин.	Тип.	Макс	Единицы измерения
Іи	Непрерывный ток истока (диод)				49	A
Іи им	Импульсный ток истока (диод)	G S S S S S S S S S S S S S S S S S S S			160	^
Uид	Прямое напряжение диода	Ic=25A, Uзи <mark>=0B, T</mark> _J =25°С			1.3	В
tвост.	Время восстановления при переключении в обратном направлении	Iд=25A, di/dt = 100A/мксек., T _J =25°C		63	95	нсек.
Qобр.вост.	Заряд обратного восстановления			170	260	нКул
tвк.	Прямое время включения	Внутреннее время включения незначительно (на включение влияют Lc + Lu)				

Пластиковый корпус, 3 вывода

TO-220AB

Размеры в миллиметрах (дюймах).

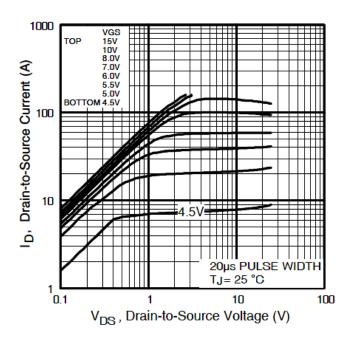


Fig 1. Typical Output Characteristics

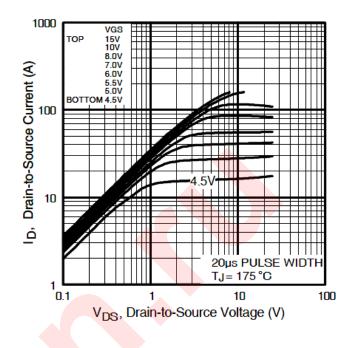


Fig 2. Typical Output Characteristics

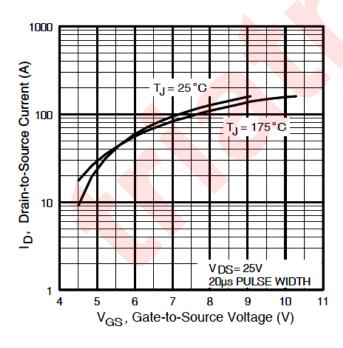
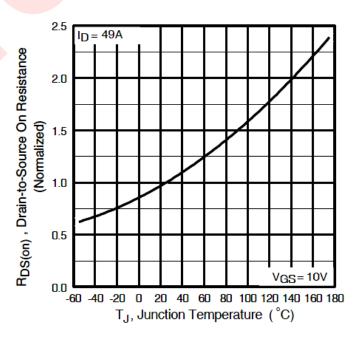
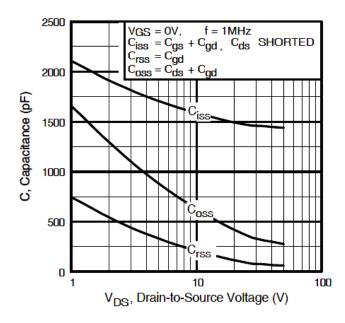




Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

IRFZ44N

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

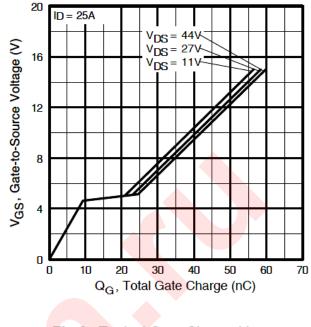
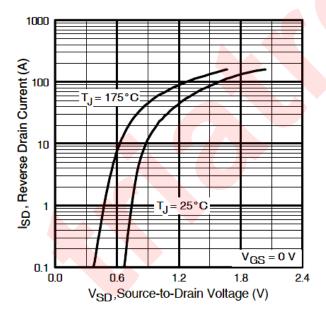



Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

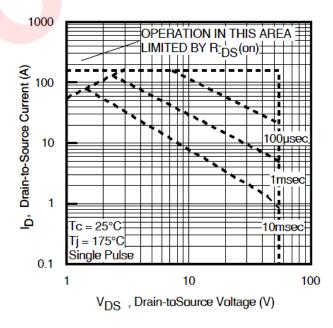
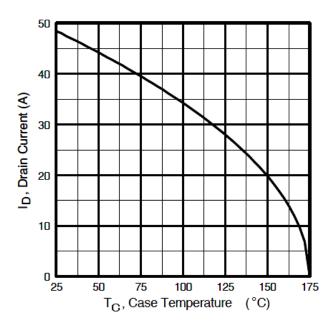



Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current Vs. Case Temperature

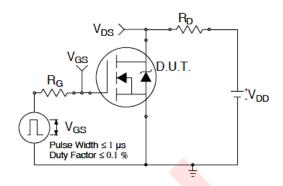


Fig 10a. Switching Time Test Circuit

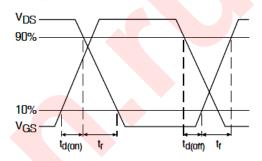


Fig 10b. Switching Time Waveforms

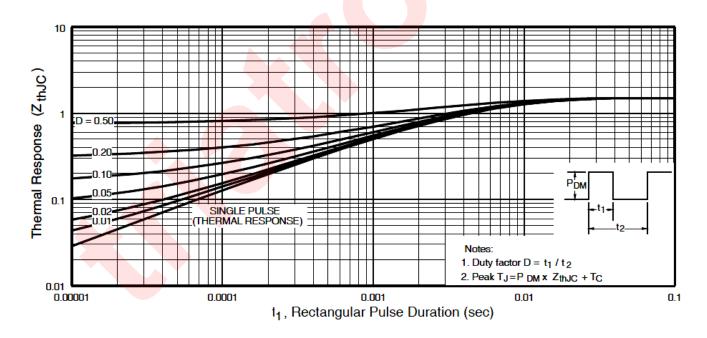


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

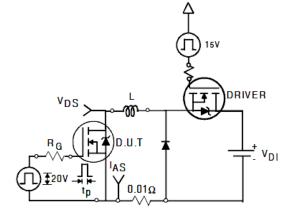


Fig 12a. Unclamped Inductive Test Circuit

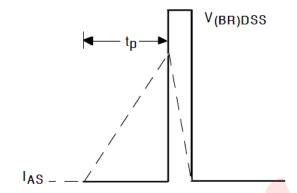


Fig 12b. Unclamped Inductive Waveforms

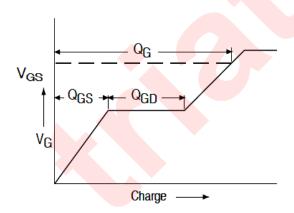


Fig 13a. Basic Gate Charge Waveform

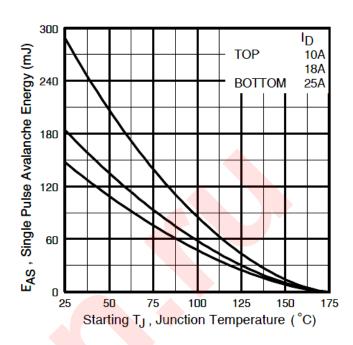


Fig 12c. Maximum Avalanche Energy Vs. Drain Current

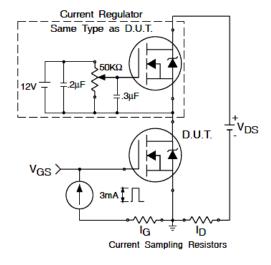
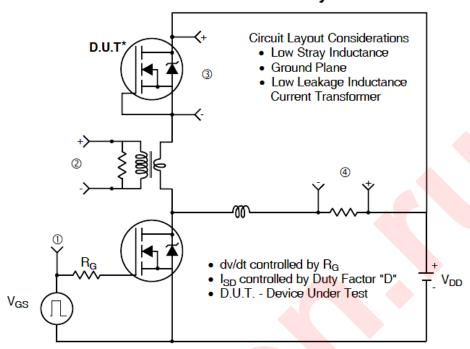
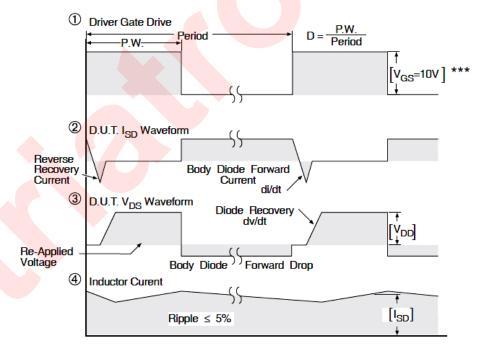




Fig 13b. Gate Charge Test Circuit

Peak Diode Recovery dv/dt Test Circuit

^{*} Reverse Polarity of D.U.T for P-Channel

*** V_{GS} = 5.0V for Logic Level and 3V Drive Devices

Fig 14. For N-channel HEXFET® power MOSFETs